
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2020/2021

Crewmate Gameplay Strategy Optimization Using
Graph Modelling for “The Skeld” Map in Among Us

Ryandito Diandaru 13519157

Program Studi Teknik Informatika
Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
13519157@std.stei.itb.ac.id

Abstract—Among Us is a murder mystery game developed by
InnerSloth, it is a game where players roleplay as spacemen and
there are two different objectives for each role. This paper is
constrained only to be covering the Crewmate role on “The Skeld”
map. The objective of a crewmate role is to vote out the hidden
impostor(s) among themselves or to finish all the tasks assigned to
each player collectively. In order to complete the tasks assigned,
players have to walk around the map to go to task areas. To
optimize the gameplay strategy of a crewmate, a model in the form
of weighted graph is used. The weights of the model graph are
determined through the distance it takes to get from a task map to
another and a heatmap of player death locations provided by the
developers of the game. For each set of tasks assigned, a new
complete weighted graph is formed based on the aforementioned
model weighted graph. The statistically best route then can be
found by finding the Hamiltonian shortest path from said new
complete weighted graph.

Keywords— InnerSloth, Dijkstra, Hamiltonian, Weighted,

Graph.

I. INTRODUCTION
Among Us is a Unity-built murder mystery/social deduction

video game developed by InnerSloth released on June 15th 2018,
available on iOS, Microsoft Windows, and Android platforms.
A game of Among Us lets players roleplay as spacemen (with a
minimum and maximum of players of 4 and 10 respectively) in
which there are 1 to 3 impostor(s) working together on a
spaceship. Depending on the role given by the algorithm of the
game, each player has different objectives to complete to win
the game. Essentially, the roles assigned divides the players into
2 teams, which are the Crewmates and the Impostors. As an
impostor, the objective is to kill crewmates until there are more
than or equal number of impostors to the number of crewmates
without giving away their status as an Impostor, impostors can
also trigger emergency alarms by sabotaging parts of the
spaceship as a way to distract crewmates from finishing their
objectives, some sabotaging schemes set by the Impostors has
to be resolved by the players before a certain amount of time
given to resolve said sabotage, otherwise the Impostors win the
game. On the other side, to win the game as a crewmate is to
vote out all the impostors or to work as a team and finish each
and every single task given to every crewmate. Players can call
an emergency meeting if a dead body is found and a discussion
is open to vote out the suspected Impostor. However, each

player can press an emergency meeting button in the middle of
the spawning area if they want to forcefully open a discussion,
this also leads to a voting of who should be ejected (vote out as
impostor). When a player dies, they can still act upon their roles
(crewmates can still finish their remaining tasks and impostors
can still sabotage the spaceship) but they will not be able to vote
and report a dead body, they also cannot talk to the players that
are still surviving.

The game mechanics of Among Us entails a formulation of a
strategy, be it playing as an impostor or a crewmate. One of the
obvious strategies of playing for both as a crewmate or as an
impostor is to stay alive for as long as possible throughout the
game in order to be still be able to vote out impostors/murder
crewmates.

The Developers of Among Us provided statistics of the game
which is accessible through their website. With the data
provided, weighted-graph modelling for task completion for the
crewmate role is possible. This paper will formulate a weighted
graph to model an itinerary for a crewmate in order to complete
the tasks given while maintaining the alive status for as long as
possible.

II. LITERATURE REVIEW

A. Weighted Graphs
Weighted graphs are a kind of graph, defined by the

equation

𝐺 = (𝑉, 𝐸) (1)

In which V denotes vertices and E denotes edges. The difference
between a non-weighted graph and a weighted graph is that each
edge is assigned a certain numerical value, called a weight. The
weights assigned may represent various things, they are often
referred to as the “cost” of moving through said edge. Weighted
graph may or may not be directed. In applications, weighted
graph may represent the length of a route, how much it costs to
move from one place to another, etc. [1]

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2020/2021

Fig. 2.1. Example of a weighted graph. Image retrieved from
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-

2021/Graf-2020-Bagian1.pdf

B. Complete Graphs
A complete graph is a simple graph in which every vertex

has a corresponding edge that leads to every other vertex on the
same graph. A complete graph with n numbers of vertices
denoted by Kn has a number of edges denoted by E in the
following equation [2]

𝐸 =
𝑛(𝑛 − 1)

2 (2)

A visual representation of a complete graph is as follows:

Fig. 2.2. Visual representation of a complete graph. Image retrieved

from https://mathworld.wolfram.com/CompleteGraph.html

C. Dijkstra’s Algorithm
Dijkstra’s Algorithm is an algorithm that finds the shortest

path from a weighted graph. The algorithm is known to be the
best at present in determining the shortest path from 2 vertices
in a weighted graph. In the process, a label is called. Said label
consists of 2 different parts. The first part is a letter representing
a symbol in front of a point that shows where it is, and the second
part, a numerical value which represents weights an edge of 2
vertices. All labels start out as a temporary label in the
beginning, and in every algorithm cycle, they make one for a
permanent label. Therefore, the shortest/cheapest path can be

generated at most by n-1.[3] Below is an example of a
pseudocode for Dijkstra’s Shortest Path Algorithm.[4]

Fig. 2.3. Pseudocode for Dijkstra’s Shortest Path Algorithm. Image
retrieved from https://www.programiz.com/dsa/dijkstra-algorithm

D. Hamiltonian circuit and path
A Hamiltonian circuit is a path in a graph that goes through

every vertex in the graph and goes back to the starting vertex,
making the starting vertex got passed twice. Whereas a
Hamiltonian path is a path in a graph that goes through every
vertex in the graph but does not return to the starting vertex, in
consequence, the path passes through every vertex exactly only
once. Both Hamiltonian circuit and Hamiltonian path does not
need to go through every edge in the graph. A graph is called a
Hamiltonian graph if it has a Hamiltonian circuit, and it is called
a semi-Hamiltonian graph if it has a Hamiltonian path. Every
complete graph is a Hamiltonian graph.[5]

Theorem 2.1 Every complete graph is a Hamiltonian graph.

Fig. 2.4. Example of a Hamiltonian graph. Image retrieved from

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-
2021/Graf-2020-Bagian3.pdf

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2020/2021

III. GRAPH MODEL CONSTRUCTION
A. Constraints
The version of Among Us in which this paper is based on is

v2020.11.17o, this version has 3 different maps for players to
choose from, and the maps are as follows: “The Skeld”, “Mira
HQ”, and “Polus”. This paper will be constrained to only discuss
the properties of the map “The Skeld”.

Tasks that can be assigned to the players are divided into 3
categories, which are short tasks, long tasks, common tasks, and
the categories does not include tasks that was caused by a
sabotage by an impostor. The details of the tasks possible to be
assigned to the players in “The Skeld” is as follows:

TABLE 1

TASKS ASSIGNED IN “THE SKELD”
Task Category Task Name
Short Task Align Engine Output
Short Task Calibrate Distributor
Short Task Clean O2 Filter
Short Task Clear Asteroids
Short Task Prime Shields
Short Task Stabilize steering
Short Task Unlock Manifolds
Long Task Upload data
Long Task Submit Scan
Long Task Start Reactor
Long Task Inspect sample
Long Task Fuel engines
Common Task Swipe Card
Common Task Fix wiring
* Multiple areas of the map assigning the same common task is
possible, there also exists a task that do not end at the same place.
Emergency tasks are excluded from the list.

This paper also will only discuss the properties of the role

of a Crewmate, only in which the assignment of the
aforementioned tasks is possible. The reason for this decision is
that deaths in “The Skeld” that is not on the spawning area can
only be caused by the murder of a crewmate by an impostor. As
for the tasks, however, impostors can also complete but only the
emergency tasks generated from an impostor sabotage. The act
of completing self-caused tasks by impostor players if often
done to steer off suspicion of themselves.

B. Modelling Bases
The model built is based on “The Skeld” map, the layout of

said map is as follows:

Fig. 3.2.1. “The Skeld” map layout by InnerSloth, with task locations
labelled. Image retrieved from earlygame.com

As mentioned before, a few common tasks can take place
in more than one place, meaning that the number of vertices of
the graph built can exceed the number of the tasks names
available for assigning.

To determine the weight of each edge of the graph, death
rates of a task location is extracted from the heatmap that shows
how many players has ever died in that particular area. The
heatmap retrieved from the developer is as follows:

Fig. 3.2.2. “The Skeld” heatmap showing player death locations.

Image by InnerSloth (@InnerSlothDevs).

As seen on Fig. 2, every orange block shows that a player
has ever died in that area, notice that some areas are significantly
brighter than some other areas, this means that more players
playing as a crewmate has ever got killed by an impostor on that
particular location. An exception is to be made on the spawning
locations, that is to minimize an error since players can “die” on
the spawning area by logging out of the game once it started.

With Fig. 3.2.1 and Fig. 3.2.2 combined, a map that shows
task locations and the death rate on the particular area can be
generated, the figure is the following:

Fig. 3.2.3. Combined image of the heatmap of player deaths and “The

Skeld” map layout.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2020/2021

Inside the game itself, the players will be given an
abstraction of the map which locates the tasks so that the said
players are aware of where to navigate.

Fig. 3.2.4. Task map abstraction, yellow alert symbol indicates a task

to be finished. (InnerSloth)

C. Establishing the task itinerary model
The weight of the graph is determined from the data

extracted from the heatmap as seen in Fig. 3.2.2, the weight of
the graph represents the risk to get from one point to another.
The weighting calculation is based on the assumption that the
more people get killed in that particular area, the riskier the area
gets. Notice that places with bright colors tend to be places of
doing tasks, especially those of long tasks.

Hexadecimal values for each task location are to be
extracted and ranked based on their brightness on the scale of 1-
10 with 1 as the place where it is the least likely for a player to
be murdered by an impostor and 10 being the most likely and
designate them to the corresponding categories based on the
rank of each vertex. The tool used on this method is a color-
sorting tool on elektrobild.org/tools/sort-colors, in which
hexadecimal values is put and the algorithm will sort the colors
based on said hexadecimal values. The unordered list of
hexadecimal values extracted from the heatmap are as follows:
#ff4e29, #ffd333, #f4ff33, #ff9d33, #f5ff33, #ff8033, #ffeb33,
#ff7027, #ffe033, #ffcf33, #ffbc33, #fefe33, #ffb633, #f3ff33,
#fff733, #f2ff2a, #fffc33, #ff5933, #ff8333, #ffe633, #ffda33,
#ffe733, #ff9633, #f3ff33, and the result is as seen on the figure
below

Fig. 3.3.1. Color sorting from dark to light output from

elektrobild.org/tools/sort-colors

An error is seen on the picture, while colors ranging from
#f2ff2a to #fffc33 is significantly brighter than the rest of the
values, they are not on the bright end of the list. A correction
and categorization procedure yields a properly categorized
hexadecimal values, as seen in the table below.

TABLE 2
CATEGORIZATION OF HEXADECIMAL VALUES OF DIFFERENT

SHADES OF COLORS BASED ON THE “THE SKELD” DEATH
LOCATION HEATMAP

Hex Category Hex Value
2 #ff4e29
3 #ff5933
4 #ff8333
4 #ff8033
4 #ff7027
5 #ff9633
5 #ffb633
5 #ffbc33
5 #ff9d33
6 #ffda33
6 #ffd333
6 #ffcf33
7 #ffe733
7 #ffe633
7 #ffe033
7 #ffeb33
8 #fff733
9 #fffc33
9 #fefe33
10 #f3ff33
10 #f2ff2a
10 #f3ff33
10 #f5ff33
10 #f4ff33

After the hexadecimal values has been properly assigned to

the correct categories, an abstraction of the task areas with a
color-coded graph can be generated, along with numerical
values which represents the risk of being on that specific area.
At this point, the edges of the graph are still representing the
nearest task locations. Edges on the following graph is based on
whether 2 neighboring vertices takes place in the same room, or
whether they are merely close to each other.

Fig. 3.3.2. Color-coded graph model generated, values on the vertices

determined from data extracted from the heatmap.

The two values on the vertices of the graph above on the
format X/Y represent the index and the category it falls on
respectively.

The numerical values ranging from 1-4 on the edges shown
in the graph in the figure above represents the distance between
task locations. It is wise to put the distance into consideration
because based on the heatmap, a case where a crewmate gets
killed by an impostor while moving from one place to another is

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2020/2021

also likely.
After generating the model, a Hamiltonian shortest path is

to be calculated to find the most statistically effective task
completion itinerary.

IV. TASK ITINERARY CALCULATION

Each time a game starts, each crewmate will get a set of
missions that need to be completed, each set of mission
generated by the game will generate a unique weighted graph
based on the weighted graph in Fig. 3.3.2.

All vertices that needed to be a member of the new graph is
identified to generate a unique complete weighted graph. This is
done by identifying which tasks are assigned to the player and
matching them from the map to the corresponding vertex as
shown in Fig. 3.3.2, e.g., Stabilize Steering task is assigned, then
vertex no. 7 is needed to be in the itinerary.

Let U be the set of all vertices of a unique graph generated for
each game as a crewmate and let A be the set of all vertices in
the graph shown in Fig. 3.2.2. For each U generated by a game
in “The Skeld” map, the sets U and A will always satisfy

𝑈	 ⊆ 	𝐴 (3)

Thus, the graph for each set of tasks is a subgraph of the graph
in Fig. 3.3.2, and the vertices of the said unique graph is a subset
of the set of all vertices of Fig. 3.3.2.

The edges for the set of vertices U is then to be determined,
in which each possible edge from 2 different vertices must be
calculated. The calculation of the weight for each edge is defined
by the equation below

𝑊 = 1
𝐶! +	𝐶"

2 4 + 𝑃 (4)

W = Weight calculated
C1 = Origin vertex category
C2 = Destination vertex category
P = Shortest distance from vertex C1 to C2

Equation (4) above shows W being the weight calculated, C1 and
C2 being the category of 2 vertices desired to be calculated, and
P being the added total of the distance of shortest/cheapest
possible path between vertex C1 and C2 determined by Dijkstra’s
algorithm, referring to the graph shown in Fig. 3.2.2. Thorough
calculations of all possible edges from the set U entails a
complete graph with final edge values. From the complete graph
created, a Hamiltonian shortest path is to be determined to be
the best possible route to take in order for a crewmate to
complete the tasks. Note that for every task finished, a
recalculation of the Hamiltonian shortest past may be necessary
due to the reset of a task vertex category to zero upon completion
and the existence of some tasks that do not end at the same place.

Example 1: Consider the following task assigned to a crewmate.

• Admin: Swipe Card
• Cafeteria: Empty Garbage
• Electrical: Divert Power to Shields

• Weapons: Download Data
With the task locations given in Fig. 4.1 below

Fig. 4.1. Task locations for Example 1.

From the set of tasks above, a complete weighted graph to model
the remaining tasks to be done by the player is generated.

Fig. 4.2. Weighted graph generated for Example 1.

For the sake of time efficiency, the starting point is set to only
have one edge. The edge given to the starting vertex is the
starting edge for the case in this example. The edges of the graph
above is the result of the shortest path calculation, which is the
minimum of all possible sum of distance weight from each
origin vertex to the destination vertex. Also notice that the set of
vertices of the graph in Fig. 4.2 is a subset of the set of vertices
of the graph in Fig. 3.2.2, thus the graph generated satisfies (3).
A weighted adjacency matrix to represent the actual cost of
doing task is then calculated using equation (4).

!

0 10 12 16
10 0 16 20
12 16 0 14
16 20 14 0

'

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2020/2021

The ordered weight calculation is as seen on the table below.
TABLE 3

ORDERED WEIGHTED ADJACENCY LIST FOR EXAMPLE 1
Final Weight Edge
10 (2,3)
12 (2,15)
14 (15,16)
16 (2,16)
16 (3,15)
20 (3,16)

The calculation results yield a Hamiltonian shortest path, as
shown in Fig. 4.3 below.

Fig. 4.3. Hamiltonian shortest path for Example 1.

From Fig. 4.3 it is known that statistically the safest path to
finishing the set of tasks assigned to the player in Example 1 is
to do the tasks through the route as shown on the graph and in
the following order:

1. Cafeteria: Empty Garbage
2. Weapons: Download Data
3. Admin: Swipe Card
4. Electrical: Divert Power to Shields

The Hamiltonian shortest path may need recalculation by the
time the player finished some of the tasks. Nonetheless, the
Hamiltonian shortest path generated is valid for the time being.

V. CONCLUSION
The study of discrete mathematics is applicable to various

aspects of human life, that includes even things such as video
games. Among Us is a survival strategy and also a social
deduction game where some branches of the study of Discrete
Mathematics is applicable, in which case are graphs and
algorithms for finding the shortest/cheapest to get from one
point to another. A model in the form of a weighted graph is
built to help formulate a strategy for playing a game of Among
Us as a crewmate in “The Skeld” map. Optimization of
crewmate gameplay strategy is done by generating a new
complete weighted graph based on the model created and the
tasks assigned. That way, the calculation of a Hamiltonian
shortest route which shows the best statistical route to take to

finish tasks is possible. However, recalculation after each task
completion may be needed.

VI. ACKNOWLEDGEMENTS
First and foremost, I want to thank Allah who has given me

life and the beautiful gift of human consciousness. Without
which, I would never have even been where I am right now, a
college student, inheriting years and years’ worth of human
knowledge development. I want to say thanks to my mother and
father, who have supported me from the first day I came into this
world, who are there on the ups and downs and the rights and
lefts of my life. To all my college professors, especially Dr. Ir.
Rinaldi Munir, MT., who had taught me a great portion of the
study of Discrete Mathematics, which will surely be useful for a
career in computer science, and to all my friends and loved ones,
whose acts of love and support, no matter how small, shall not
go unnoticed.

REFERENCES
[1] Mcain, “Weighted Graphs Data Structures & Algorithms,” 2009.
[2] R. Munir, “Graf(Bag.1),” vol. 1, p. 58, 2020.
[3] Y. Z. Chen, S. F. Shen, T. Chen, and R. Yang, “Path optimization

study for vehicles evacuation based on Dijkstra algorithm,” Procedia
Eng., vol. 71, pp. 159–165, 2014.

[4] Programiz, “Dijkstra’s Algorithm.” [Online]. Available:
https://www.programiz.com/dsa/dijkstra-algorithm. [Accessed: 07-
Dec-2020].

[5] R. Munir, “Graf (Bag.3),” p. 48, 2020.

PERNYATAAN
Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan
dari makalah orang lain, dan bukan plagiasi.

Bandung, 3 Desember 2020

Ryandito Diandaru 13519157

